Al and Firm Turnover in the EU

Sedat Alataş¹

¹Aydın Adnan Menderes University, Türkiye

December 4, 2025

Why This Study?

- In economic terms, Al is increasingly viewed as a transformative general-purpose technology (GPT) that can reshape how firms operate, compete, and innovate.
- However, when we look at the data especially for Europe the picture becomes less clear.
 - The empirical literature tells us little about what AI actually does at the firm level.
 - Evidence is particularly scarce for **commercial outcomes**, such as turnover.
- The main reason is the lack of systematic, comparable firm-level data on Al adoption.
 - Some aggregate country-level indicators exist, but firm-level data are limited.
 - Traditional innovation surveys (e.g., CIS) did not include AI questions and offer no panel structure.
 - They are less detailed to capture AI applications.

Research Questions

Overall aim: To understand whether AI creates real commercial value for European firms, and under which conditions these gains emerge.

We focus on four main questions:

- Is Al positively associated with higher firm turnover in the EU?
- How important are complementary digital technologies (e.g. big data, cloud, robotics)?
 - Al's benefits often depend on these complements, which provide the data, infrastructure, and automation required for Al to generate meaningful performance gains.
- Ooes the Al-turnover relationship follow a non-linear / J-curve pattern?
 - Al investments may initially reduce measured productivity due to adjustment costs and organizational restructuring.
 - Over time, as firms optimize Al use, productivity should increase significantly.
- Is broader Al adoption linked to a wider set of innovations?
 - Broader AI use is often associated with richer innovation activity, including product, process, organizational, or even environmental innovations etc.

The European Context

- Historically, the EU has consistently lagged behind the United States in capturing the productivity gains of ICT.
- Today, this gap is not only with the U.S.—Europe is also falling behind China, which is rapidly advancing in digital technologies and Al.
- Al adoption within Europe is highly uneven:
 - Only a few Northwestern European regions specialize strongly in Al.
 - Southern and Eastern European regions lag significantly behind.
- This creates a clear **core-periphery** structure in Al capabilities.
- As a result, Europe faces a risk of **double divergence**:
 - A digital divide uneven adoption and investment in Al
 - A productivity divide widening economic performance gaps
- Therefore, understanding how AI translates into **firm-level performance** is crucial to assess whether AI will help bridge these gaps or widen them.

Data in One Slide

- Source: Flash Eurobarometer 486 SMEs, Start-ups, Scale-ups and Entrepreneurship.
- Coverage:
 - EU-27 countries,
- Year: 2020.
- Sample used in this study:
 - 6,328 SMEs (we exclude large firms, 250+ employees).
 - CEOs, general managers or similar decision-makers as respondents.
- We include sector and country fixed effects to account for structural differences
- Control for key firm characteristics (size, age, location, financial health, innovation history).

Three Ways We Measure Digital Adoption

- Al (narrow): dummy for firms reporting use of Al (e.g. machine learning, image recognition).
- Al adoption (broad): dummy for using at least one among
 - AI, big data, or robotics.
 - ⇒ proxy for **digital maturity**.
- Al breadth: intensity measure combining
 - number of Al-related technologies (Al, big data, robotics),
 - and the number of innovation types they stimulate (product, process, organizational, environmental, social, marketing, other).
- These broader AI measures help mitigate endogeneity by capturing digital maturity and complementary innovation patterns rather than treating AI adopters and non-adopters as two comparable groups.

Result 1: Al Alone Has a Weak Effect

VARIABLES	(1)	(2)	(3)	(4)	(5)	(6)
Al	0.124**					0.0637
Robotics	(0.0593)	0.0504				(0.0655) 0.00135
Bigdata		(0.0564)	0.167***			(0.0591) 0.127**
Smartdevices			(0.0513)	0.103**		(0.0544) 0.0709*
Cloudcomputing				(0.0393)	0.118***	(0.0414) 0.0933**
Constant	11.99*** (0.334)	11.98*** (0.336)	11.99*** (0.332)	11.97*** (0.333)	(0.0414) 11.95*** (0.329)	(0.0412) 11.95*** (0.328)
Observations R-squared Sector FE Country FE CV	6,460 0.595 Yes Yes Yes	6,460 0.595 Yes Yes Yes	6,460 0.595 Yes Yes Yes	6,460 0.595 Yes Yes Yes	6,460 0.595 Yes Yes Yes	6,460 0.596 Yes Yes Yes

- Digital technologies are positively associated with turnover, but the magnitude differs across tools: the largest effects come from big data, Al, cloud computing, and smart devices.
 Al's effect weakens and becomes insignificant once other digital technologies are added, indicating
- Al's effect weakens and becomes insignificant once other digital technologies are added, indicating that Al's performance impact depends on complementary technologies rather than Al alone.
 - Robotics shows no significant association with turnover, reflecting its capital-intensive, manufacturing-oriented nature and limited applicability across EU SMEs.

Result 2: Complementarities Matter

VARIABLES	(1)
Al_Adoption (Al/Bigdata/Robotics)	0.186***
AGE*AI	(0.0337) 0.186**
AGE*Cloud	(0.0883) 0.116**
Constant	(0.0560) 11.99*** (0.329)
Observations	6,460
R-squared	0.596
Sector FE Country FE	Yes Yes
CV CV	Yes

- Al adoption variable (=1 if the firm uses Al, big data, or robotics) has a large and highly significant
 effect (0.186***), indicating that integrated digital use—rather than isolated tools—drives firm gain.
- The effect size exceeds that of any individual technology in Table 1, showing that complementary across technologies generate stronger gains.
- Robotics alone offers limited improvement, but combining it with AI and data leads to higher turnover.
- Stronger effects for older firms support the J-curve hypothesis: experienced firms are better positioned.
- Takeaway: moving from experimental/isolated adoption to a broader digital ecosystem yields visible and substantial performance gains.

Result 3: Non-linear (J-curve) Pattern and Innovation

VARIABLES	(1)	(2)
AI_Breadth	0.304**	0.925***
AI_Breadth_squared	(0.125)	(0.273) -1.671** (0.633)
AGE×AI	0.188* (0.0926)	0.185*** (0.0885)
AGE×Cloud	0.112*	0.113*
Constant	(0.0577) 11.99*** (0.334)	(0.0571) 10.35*** (0.223)
Observations R-squared Sector FE Country FE CV	6,460 0.595 Yes Yes Yes	6,460 0.595 Yes Yes Yes

- Al Breadth shows a strong positive effect: adopting multiple Al-related technologies boosts turnover.
- Results support Al as an emerging GPT: broader use stimulates product, process, organizational, and environmental innovations.
- It does not only affect one outcome, but shapes a wide innovation ecosystem in firms.
- Adding the squared term reveals an inverted-U shape: gains increase from low to medium breadth but diminish at high levels.
- Pervasiveness has limits for now—very high adoption.

Result 4: Threshold Effects in AI Breadth

VARIABLES	(1) Base = No AI	(2) Base = Low (0-5%)	(3) Base = Medium (5-15%)	(4) Base = High (>15%)
Al_Breadth		-0.135	-0.268***	-0.0482
AI_Breadth	0.135 (0.0852)	(0.0852)	(0.0483) -0.133 (0.0954)	(0.0548) 0.0872 (0.0756)
Al Breadth	0.268*** (0.0483)	0.133 (0.0954)	(,	0.220** (0.0830)
Al Breadth	0.0482 (0.0548)	-0.0872 (0.0756)	0.220** (0.0830)	(,
Constant	10.33*** (0.220)	10.47*** (0.222)	10.60*** (0.235)	10.38*** (0.219)
Observations R-squared Sector FE Country FE CV	6,460 0.596 Yes Yes Yes	6,460 0.596 Yes Yes Yes	6,460 0.596 Yes Yes Yes	6,460 0.596 Yes Yes Yes

- Table 4 compares firms at different AI-breadth levels and reveals a clear threshold pattern.
- Low adopters (0-5%) perform similarly to non-adopters—early experimentation does not yet translate into gains.
- Medium adopters (5-15%) show the strongest improvement (+0.268), indicating an optimal adoption zone.
- High adopters (>15%) show no significant additional gain, consistent with diminishing returns.
- Together, results confirm the inverted-U pattern: firms benefit most from moderate Al breadth, where complementarities peak and complexity remains manageable.

What Does This Mean for the EU?

- Al is not just another software tool
- Simply increasing the number of Al adopters is not a strategy.
- Firms seem to benefit most at **intermediate** levels of AI breadth:
 - early adopters face problems, such as adjustment costs.
 - very advanced adopters face another problems, such as coordination and complexity.
- Shift focus from "adopting Al" to building digital maturity:
- Support firms through the **implementation-lag** phase.

Policy challenge: Al can help EU firms increase turnover, but only when embedded in a broader digital and organizational transformation.

Limitations

- Cross-sectional data (2020): we cannot fully observe dynamic adjustment.
- Self-reported turnover and technology use.
- Potential reverse causality: more successful firms may adopt more Al.
- More specific attention to the innovation types.

Thank you.

Comments and suggestions are very welcome.

sedat.alatas@adu.edu.tr