The Rebound Effect of Resource Efficiency

Sedat Alataş

Aydın Adnan Menderes University, Türkiye

sedat.alatas@adu.edu.tr

November 30, 2023

Climate Mitigation Policies

Figure: Global Energy Consumption by Source

Energy Efficiency for Mitigation?

Figure: Tackling Emissions

Source: Ellen MacArthur Foundation (2019)

 Energy-based solutions alone can only reduce emissions by 55% and other solutions are required to achieve deeper emission reductions.

Sedat Alataş (ADU)

The Rebound Effect

Material Consumption from 1970 to 2019

Source: Global Material Flows Database (2022)

- The OECD projects that global material use will be doubled in 2060, compared to 2011.
- Non-metallic minerals and metals will represent more than 60% of this growing demand.

Sedat Alataş (ADU)

Growing Demand for Materials

Actual (2021) and Projected (2050) Demand under IRENA's 1.5°C Scenario

Source: International Renewable Energy Agency (2022)

Sedat Alataş (ADU)

イロト イポト イヨト イヨト

э

Economically vital

- Tungsten for smartphones, gallium for many light-emitting diodes (LEDs), copper for electronics, and silicon metal for semiconductors.
- For example, 50 different metals in different quantities are needed to produce a standard smartphone (EC, 2018).

Sedat Alataş (ADU)

The Rebound Effect

November 30, 2023

< □ > < □ > < □ > < □ > < □ > < □ >

• Growing demand for materials does not come for free but at environmental cost.

Source: OECD (2019)

Sedat Alataș (ADU)	
----------------	------	--

イロト イポト イヨト イヨト

Material Efficiency

• IEA (2021) defines material efficiency as the strategies that reduce material demand or switch to lower-emission materials or production routes.

Source: IPCC (2022)

• Only energy efficiency may not be sufficient, we need more than energy efficiency!

Sedat Alataş (A	ADU))
-----------------	------	---

A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Rebound Effect

- The rebound effect refers to various mechanisms that may offset potential resource savings resulting from improvements in resource efficiency.
- Specifically, rebound effects occur when the benefits gained from resource efficiency enhancements are partially or completely offset by increased consumption or production activities.

< □ > < □ > < □ > < □ > < □ > < □ >

What do we do?

Purpose

- We comparatively investigate the material and energy efficiency performances, as well as their rebound effects.
- The European Union (EU) member countries and their main trading partners
- 1995-2019

Contribution

• This is the first study to comparatively assess the material and energy efficiency performances for the EU member countries and their main trading partners.

How do we do?

- Material intensity is still one of the most frequently used proxies for material efficiency.
 - defined as the ratio of material consumption to gross domestic product
 - only considers inputs itself
 - ignores other factors affecting material efficiency, such as structure of economy, input prices and so on.
- To address this deficiency, what we are looking for is to calculate a material efficiency based on the main determinants of material demand
- A frontier approach: Stochastic Frontier Analysis

11 / 22

< □ > < □ > < □ > < □ > < □ > < □ >

Stochastic Frontier Analysis

• The earliest SFA panel data models mainly focus on controlling country effects.

$$InDMC = f(x; \beta) + v + u \tag{1}$$

 To capture efficiency, they make country effects (fixed or random) one-sided and interpret them as efficiency.

$$ME = exp(-u) \tag{2}$$

The rebound effect is calculated as follows

$$R = 1 + \epsilon_{ME}^{DMC}$$
; where $\epsilon_{ME}^{DMC} = \frac{dlnDMC}{dlnME} = \frac{dlnDMC}{dlnep(-u)} = -\frac{dlnDMC}{du}$

Backfire (R > 1); full rebound (R = 1); partial rebound (1 > R > 0); zero rebound (R = 0); super-conservation (R < 0)

(日)

SFA Model with the Rebound Effect

$$InDMC = f(x;\beta) + v + (1-R)u$$
(3)

$$lnDMC = f(x; \beta) + v + [1 - R(\lambda'Z)]u$$
(4)

• where $R(\lambda' Z)$ is the function that describes the rebound effect:

- Z is a vector of variables that affect the level of the rebound effect
- λ is a vector of corresponding coefficients

Model Specifications

Material model

 $lnDMC_{it} = \alpha_0 + \beta_1 lnGDP_{it} + \beta_2 lnPOP_{it} + \beta_2 lnAREA_t + \beta_4 lnISH_{it} + \beta_5 lnSSH_{it} + \beta_5 lnSSH_{it}$ $\beta_{s} lnMP_{it} + \beta_{\gamma} lnEC_{it} + \beta_{s} lnTO_{it} + \beta_{s} UMDT + [1 - R(\lambda'Z_{it})] + v_{it} + u_{it}$

Energy model

$$\begin{split} lnEC_{it} &= \alpha_0 + \beta_1 lnGDP_{it} + \beta_2 lnPOP_{it} + \beta_3 lnAREA_t + \beta_4 lnISH_{it} + \beta_5 lnSSH_{it} + \beta_6 lnEP_{it} \\ &+ \beta_7 lnDMC_{it} + \beta_8 lnTO_{it} + \beta_9 UEDT + [1 - R(\lambda'Z_{it})] + v_{it} + u_{it} \end{split}$$

• The $\lambda' Z$ functions for both material and energy

 $\lambda' Z_{it} = \lambda_{GDP,P} ln GDPP_{it} + \lambda_{MP} ln MP_{it} + \lambda_{CO} ln COGDP_{it} + \lambda_{ISH} ln ISH_{it} + \lambda_{T} ln UMDT$

 $\lambda' Z_{it} = \lambda_{GDP P} lnGDPP_{it} + \lambda_{FP} lnEP_{it} + \lambda_{CO} lnCOGDP_{it} + \lambda_{ISH} lnISH_{it} + \lambda_{T} lnUEDT$

Sedat Alatas (ADU)

What determines materials and energy demand?

(a) Drivers of material demand frontier and rebound effect		(b) Drivers of energy demand frontier and rebound effect			
Variables	Coefficient	Std. err.	Variables	Coefficient	Std. err.
Frontier					
lnGDP	1.1814***	0.0999	lnGDP	1.1266***	0.0483
InPOP	-0.6922***	0.1133	InPOP	-0.1457***	0.0464
InAREA	0.3440***	0.0426	InAREA	0.1806***	0.0329
lnISH	-0.3495***	0.1127	lnISH	-0.2596***	0.0766
lnSSH	-0.5146***	0.1985	lnSSH	0.0266	0.0708
lnMP	0.1277***	0.0299	lnEP	-0.0616***	0.0166
lnEC	-0.0724	0.0735	InDMC	-0.0031	0.0122
lnTO	-0.1863***	0.0429	lnTO	-0.0252	0.0177
UMDT	0.0027	0.0034	UEDT	-0.0219***	0.0016
Constant	-3.0965*	1.8316	Constant	-29.0039***	0.8977

- A large part of the parameter estimates are statistically significant and show large similarities in terms of sign and magnitude.
- There is no very interesting outcome:
 - GDP has a positive significant effect on both energy and materials.
 - Larger areas require more energy and materials.

Sedat Alataş (ADU)

Rebound Effect: Determinants

(a) Drivers of material demand frontier and rebound effect		(b) Drivers of energy demand frontier and rebound effect			
Variables	Coefficient	Std. err.	Variables	Coefficient	Std. err.
Rebound Effect					
InGDPP	-0.0948	0.0632	lnGDPP	0.1968***	0.0189
lnMP	0.1852***	0.0436	lnEP	-0.0481***	0.012
InCOGDP	-0.7763***	0.1783	InCOGDP	-0.4773***	0.0664
lnISH	-0.3946***	0.0922	lnISH	-0.1664***	0.0579
UMDT	0.0086**	0.0043	UEDT	-0.0166***	0.0022
σ_u	1.1039**	0.4318	σ_u	3.0007***	0.4169
σ_v	-4.0628***	0.0493	σ_v	-5.9613***	0.0493

• There are some interesting outcomes:

- Income per capita is statistically significant and positive for the energy rebound effect, yet it is for materials.
- Energy price has a negative sign, but it is positive for materials.

Resource Efficiency and Rebound Effect I

• Countries perform better in terms of energy efficiency.

• The energy rebound effect is higher than materials.

Sedat Alataş (ADU)

The Rebound Effect

November 30, 2023

Resource Efficiency and Rebound Effect II

• There exists a positive relationship between efficiency and rebound effects: more efficiency leads to more rebound effects.

Sedat Alataş (ADU)

The Rebound Effect

November 30, 2023

Resource Efficiency and Rebound Effect III

- Material efficiency scores are considerably low in the early period, yet improving significantly over the years.
- However, energy efficiency improvements have increased only by around 7% from 1995 to 2019, while this increase is around 130% for material efficiency.

Sedat Alataş (ADU)

The Rebound Effect

November 30, 2023

Material and Energy Efficiency

Material Efficiency

- The most developed EU countries and their rich trading partners have the highest material efficiency scores.
- On the other hand, relatively less developed member countries and trading partners rank low.

Sedat Alataş (ADU)

The Rebound Effect

November 30, 2023

Conclusion

- Both energy and material efficiency improvements are critical in meeting climate goals, yet they might have a rebound effect.
- Countries perform better in terms of energy efficiency, yet the rebound effect is also higher: positive link
- Material efficiency is lower, but improves over the years. There is significant room for efficiency improvements for low-scored countries.
- Developed EU countries and their rich trading partners generally ranked higher in material and energy efficiency scores, while less developed members and partner countries ranked lower.
- Our findings suggest that the EU's CBAM could have significant implications for trading partners with low-efficiency scores.
- Policymakers should consider potential rebound effects to ensure that they are effective and sustainable.
- Rebound effect of material efficiency is significantly lower than energy efficiency rebound, suggesting important opportunities for ME policies.

The End

sedat.alatas@adu.edu.tr

Sedat Alataş (ADU)

The Rebound Effect

November 30, 2023

3 N 3