Geo-Economic Fragmentation, Energy and Environment

HSE, Moscow

December 2024

Kazi Sohag, PhD

Lead Researcher and Head of the Laboratory for International and Regional Economics, GSEM, Ural Federal University

ksokhag@gmail.com

Agenda

- Does Dependency on Russian Energy Hinder the Local Energy Capacity in EU and OECD?
- European Industrial Production in the Face of Energy Dynamics and Geopolitical Shocks
- Conflict, Sanctions and Sectoral Inflations in EU: Structural Breaks Analysis
- Environmental Policy Dilemma

Russia-EU Energy Dis-(Trade) Integration

- Scholarly discourse presents an array of perspectives on the short and long-term implications of Russia's energy trade with Europe. This dichotomy can be explained through examining the short-term benefits contrasted against the long-term costs. World-System Theory, which divides the world into core, semi-periphery, and periphery nations, emphasizing their economic and political connections.
- The energy trade integration between the EU and Russia has yielded substantial immediate benefits. The EU, with its high dependency on energy imports, has identified Russia as a stable and dependable provider of energy resources, contributing to approximately 40% of the EU's gas imports (Eurostat, 2020)
- For instance, Germany, the powerhouse of the EU's economy, depends on Russia for about 35% of its gas supply (Gritz & Wolff, 2024)
- EU's over-reliance on energy allowed Russia to gain an excessive influence over its domestic issues, eventually it jeopardized its energy security due to political discord between two-counterparts(Siddi, 2017)
- Zbigniew Brzezinski, in his book The Grand Chessboard: American Primacy and Its Geostrategic Imperatives (1997

Major agreements

- 1994: Partnership and Cooperation Agreement (PCA)
- **1997**: Yamal-Europe pipeline agreement
- 2000: Nord Stream 1 pipeline planning
- 2005: North European Gas Pipeline (NEGP) project initiated
- 2011: Nord Stream 1 pipeline operational
- 2012: South Stream pipeline planning
- 2014: South Stream project cancellation
- 2015: Nord Stream 2 planning initiated
- 2019: TurkStream pipeline operational
- 2021: Nord Stream 2 construction completed

Does Dependency on Russian Energy and Hinder the Local Energy Capacity in EU and OECD?

Empirical Setup

- Outcome variable $Y_i = Y_i(T_i)$ which is local energy capacity
- No-dichotomous treatment variable = % of Reliance on Russian Energy
- Matching Variable: GDP growth, trade openness, labour force participation, environmental policy stringency, and country-specific proven oil reserves

Dose Response Function

 $Y_i = Y_i(T_i)$, corresponding to the specific treatment level. Our focus is on the average response to the dosage function $\Psi(t) = E\{Y_i(t)\}$.

To elaborate further, if we denote $r(t, x) = f_{T|X}(t|x)$ as the conditional probability density function of the treatment given the covariates, then the GPS (Generalized Propensity Score) can be characterized as:

R = r(T|X)

$$\gamma(t,r) = E\{Y(t) | r(t,X) = r\} = E(Y|T = t, R = r)$$

 $\gamma(t,r)$ is does response which is function of treatment (t) and GPS and $E\{Y(t)|r(t,X)\}$ is the expected value of

outcome variable Y, given the treatment and covariates X vector.

 $\psi(t) = E[\gamma\{t, r(t, X)\}]$

Variable	Obs	Mean	Std. dev.	Min	Max
Treatment Variable					
Reliance on Russian Energy	1,376	13.77331	20.57883	0	165.3974
Covariate- Matching Variable					
GDP Growth Rate	1,326	2.678836	3.568779	-14.83861	24.37045
Trade Openness	1,352	25.07333	1.596064	21.38162	28.56305
Environment Policy Stringency	837	2.171898	1.06926	1.00e-06	4.888889
Labor Force	1,376	15.43076	1.550848	11.81923	18.93411
	1,254	4.330664	21.54878	0	180.021
Outcome Variable					
Total Energy Capacity	1,362	58.4824	148.4978	.25	1176.729
Renewable Energy Total	1,366	46.47828	94.18233	0	861.58
Solar energy	946	2.571105	8.83295	0	93.9867
Wind energy	946	3.881469	11.46363	0	132.4006
Bioenergy	946	1.107707	2.392668	0	18.928

Distribution of Reliance or Treatment

Percentiles	Smallest		
0	0		
.0055625	0		
.0701708	0	Obs	779
1.126167	0	Sum of wgt.	779
7.353785		Mean	14.04155
	Largest	Std. dev.	15.80656
22.91816	67.95496		
36.46448	68.2411	Variance	249.8475
48.36882	68.86954	Skewness	1.342642
66.01558	69.85736	Kurtosis	4.312674
	Percentiles 0 .0055625 .0701708 1.126167 7.353785 22.91816 36.46448 48.36882 66.01558	Percentiles Smallest 0 0 .0055625 0 .0701708 0 1.126167 0 7.353785 Largest 22.91816 67.95496 36.46448 68.2411 48.36882 68.86954 66.01558 69.85736	Percentiles Smallest 0 0 .0055625 0 .0701708 0 .0701708 0 J.126167 0 Sum of wgt. 7.353785 Mean Largest Std. dev. 22.91816 67.95496 36.46448 68.2411 Variance 48.36882 68.86954 Skewness 66.01558 69.85736 Kurtosis

Т

Reliance on Russian Energy (%)

Australia ≆ -	Austria	Belgium	Bulgaria	Canada	Chile	Colombia	
87 - 97 - 99 -							
Costa Rica	Croatia	Cyprus	Czech Republic	Denmark	Estonia	Finland	
9		~ h	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
France	Germany	Greece	Hungary	Iceland	Ireland	Italy	
0							
Japan	Korea	Latvia	Lithuania	Luxembourg	Malta	Mexico	
90 - 00 90 - 00 90 - 00 90 - 00		man and a second	Man				
Netherlands	New Zealand	Norway	Poland	Portugal	Republic of Turkiye	Romania	
9 00 90 00 00 00 00 00 00 00 00 00 00 00							
Slovak Republic	Slovenia	Spain	Sweden	Switzerland	United Kingdom	United States	
1990 2000 2010 2020	1990 2000 2010 2020	1990 2000 2010 2020	1990 2000 2010 2020	1990 2000 2010 2020	1990 2000 2010 2020	1990 2000 2010 2020	
		Reliar	nce_Total — Rel	iance_coal			
		Reliar	nce_oil — Rel	iance_gas			

The Dose Response of Russian Energy Reliance to Total Energy Capacity

Dose response function = Linear prediction

Total Energy Capacity

Dose response function = Linear prediction

Estimated does response of total renewable energy capacity to reliance on Russian energy

Dose response function = Linear prediction

Confidence Bounds at .95 % level Dose response function = Linear prediction Estimated does response of reliance on Russian energy on Solar energy capacity.

Dose response function = Linear prediction

Dose response function = Linear prediction

Estimated does response of reliance on Russian energy on Wind energy capacity.

Summary

- The empirical results reveal that countries relying heavily on Russian energy have experienced negative treatment effects compared to nations with no reliance on Russian energy.
- This is true even after controlling for factors such as GDP growth, trade openness, labour force participation, environmental policy stringency, and country-specific proven oil reserves.
- The inadequate growth of necessary infrastructure for mining and refining, lower transportation costs, and improved diplomatic relations leading to easier access to cheaper energy imports are among the underlying factors contributing to this trend.

European Industrial Production in the Face of Energy Dynamics and Geopolitical Shocks

Variable	Description	Sources
Total Industrial Production Index (TIPI)	Industrial production includes the production of industrial enterprises. The indicator covers such sectors of the economy as manufacturing, electricity generation, mining and others. The indicator is calculated as the ratio of output in a particular year to 2015 (2015 output = 100).	Organization for Economic Cooperation and Development https://data.oecd.org/
Manufacture Production Index (MPI)	Cleared of the influence of construction total industrial production index. The indicator is calculated as the ratio of output in a particular year to 2015 (2015 output = 100)	Organization for Economic Cooperation and Development https://data.oecd.org/
The price of Brent crude oil (OP)	The cost of Brent crude oil in dollars per barrel.	The World Bank https://www.worldbank.org/
The price of natural gas in Europe (GP)	The cost of natural gas in Europe. From April 2015 – Netherlands Title Transfer; during April 2015 – average import border price and a spot price component	The World Bank https://www.worldbank.org/
The oil price shock (OPS)	We apply Hodrick-Person filter to generate oil price shocks.	Compiled by the authors on the basis of World Bank data
The gas price shock (GPS)	We apply Hodrick-Person filter to generate oil price shocks.	Compiled by the authors on the basis of World Bank data
Real Effective Exchange Rate (REER)	An indicator that characterizes the dynamics of exchange rates. It is calculated as the weighted sum of the indices of the real exchange rate of a given year in relation to the base. Each such index is multiplied by the share of trading partner countries in foreign trade turnover.	Brussels European and Global Economic Laboratory https://www.bruegel.org/
Geopolitical Risk Index (GPR)	The Index, a well-known information policy specialist today, has published 10 news (Chicago Tribune, the Daily Telegraph, Financial Times, The Globe and Mail, The Guardian, the Los Angeles Times, New York Times, USA Today, The Wall Street Journal and Washington Post). The index is calculated by counting the number of articles that include information. about adverse events in 8 categories.	Dario Caldara & Matteo Iacoviello https://www.matteoiacoviello.com/
Geopolitical Acts Index (GPRA)	A narrower indicator relative to GPR. Search is carried out only by categories: Beginning of War, Escalation of War, Terror Acts.	Dario Caldara & Matteo Iacoviello https://www.matteoiacoviello.com/

Panel Vector-Autoregressive under System Generalized Method of Moments

The equation describing Panel VAR has the following formulation

•
$$Y_{it} = Y_{it-1}A_1 + Y_{it-2}A_2 + \dots + Y_{it-p}A_p + X_{it}B + u_i + e_{it}$$
 (1)

Where Y_{it} – vector of dependent variables, X_{it} – vector of regressors, u_i – vector of dependent variable-specific panel fixed effects, e_{it} – errors.

Responses of TIPI to oil and gas price shocks, REER and GPRA obtained by the Panel VAR under GMM estimator

Responses of TIPI to oil and gas price shocks, REER and GPRA obtained by the Panel VAR under GMM estimator.

Joint effect with GPR to Total Industrial Production Index

Mean Group Variables

AUT BGR DEU ESP FIN GRC HUN ITA LUX NLD PRT SVK SWE BEL CZE DNK EST FRA HRV IRL LTU LVA POL ROU SVN

AUT BGR DEU ESP FIN GRC HUN ITA LUX NLD PRT SVK SWE BEL CZE DNK EST FRA HRV IRL LTU LVA POL ROU SVN

Joint effect with GPRA to Total Industrial Production Index

5

Mean Group Variables

AUT BGR DEU ESP FIN GRC HUN ITA LUX NLD PRT SVK SWE BEL CZE DNK EST FRA HRV IRL LTU LVA POL ROU SVN

AUT BOR DEU ESP FIN GRC HUN ITA LUX NLD PRT SVK SWE BEL CZE DNK EST FRA HRV IRL LTU LVA POL ROU SVN AUT BGR DEU ESP FIN GRC HUN ITA LUX NLD PRT SVK SWE BEL CZE DNK EST FRA HRV IRL LTU LVA POL ROU SVN

Summary

- European industrial production exhibits a degree of vulnerability to oil price shocks, particularly in the case of manufacturing production
- Industrial sector demonstrates resilience when faced with shocks in gas prices.
- Notably, industrial production responds adversely to geopolitical risks and escalations, with the impact being more pronounced in the presence of geopolitically induced hydrocarbon price shocks.
- Our country-specific analysis underscores significant variations in vulnerability and resilience across the examined nations

Conflict, Sanctions and Sectoral Inflations in EU: Structural Breaks Analysis

Model

- Energy Inflation =f(reliance on Russian oil, Interest Rate, Russia-Ukraine Conflict, Consumer Confidence Index, global GPR, GRP for Russia)
- Food Inflation =f(reliance on Russian oil, Interest Rate, Russia-Ukraine Conflict, Consumer Confidence Index, global GPR, GRP for Russia)
- Core Inflation =f(reliance on Russian oil, Interest Rate, Russia-Ukraine Conflict, Consumer Confidence Index, global GPR, GRP for Russia)

Variable	Description	Source
Energy Inflation (EI)	Inflation in energy prices is measured by the consumer price index. Measured as the increase in prices in the current month compared to prices of this month last year.	OECD stats.oecd.org
Food Inflation (FI)	Inflation in food prices is measured by the consumer price index. Measured as the increase in prices in the current month compared to prices of this month last year.	OECD stats.oecd.org
Non-Energy and Non-Food Inflation (NENFI)	Core inflation is measured by the consumer price index. Measured as the increase in prices in the current month compared to prices of this month last year.	OECD stats.oecd.org
Consumer Confidence Index (CCI)	An indicator that reflects households' expectations about their future state. Values above 100 reflect positive expectations, while values less than 100 indicate a pessimistic view.	OECD stats.oecd.org
GPR	A general index of global geopolitical risk is based on text searches among 10 news outlets (Chicago Tribune, Daily Telegraph, Financial Times, The Globe and Mail, The Guardian, Los Angeles Times, The New York Times, USA Today, The Wall Street Journal, The Washington Post) across 8 word categories (War Threats, Peace Threats, Military Buildups, Nuclear Threats, Terror Threats, Beginning of War, Escalation of War, Terror Acts).	Caldara & Iacoviello www.matteoiacoviello.com
Russian GPR (GPRRUS)	Country-specific index is based on counting the occurrence of joint mentions of a country name (or its capital or its main city).	Caldara & Iacoviello www.matteoiacoviello.com
Russia-Ukraine Conflict (RUC)	Dummy variable, 0 – before February 2022, 1 – after February 2022.	Compiled by the authors
Reliance on Russian Oil (RRO)	Ratio of oil imported from Russia to total oil consumption in the country for the period.	International Energy Agency www.iea.org
Interest Rate (IR)	Interest rates on financial instruments with maturity of 1 year or less set by the central bank.	OECD stats.oecd.org

Methodology

- IV regression to solve the problem of endogeneity
- The structural break in panel data model to identify the presence of structural breaks and determine when they occurred

Number of Break	Index	Date	[95% Conf. Interval]					
Model 1: energy Inflation								
1	75	2021m4	2021m2	2021m4				
2	91	2022m8	2022m6	2022m8				
Test for multiple breaks	Test for multiple breaks at unknown break-dates, H0: no break(s) vs. H1: 2 break(s)							
Test Statistics	252.27***							
Model 2: Food Inflation								
1		2016m11	2016m10	2016m12				
2		2022m1	2021m12	2022m2				
Test for multiple breaks	s at unknown brea	ak-dates, H0: no brea	ık(s) vs. H1: 2 break(s	;)				
Test Statistics	125.85 ***							
Model 3: Non-energy &	Non-food inflatio	n						
1	48	2019m1	2018m12	2019m2				
2	80	2021m9	2021m8	2021m10				
Test for multiple breaks	s at unknown brea	ak-dates, H0: no brea	ık(s) vs. H1: 2 break(s	;)				
Test Statistics	205.47***							

DV: EI	M1	M2	M3
RRO	-0.057***	-0.032***	-0.050**
	(0.028)	(0.0105)	(0.022)
RUC	0.193***		
	(0.017)		
RUC*RRO	0.085***		
	(0.048)		
GPRRUS		0.071***	
		(0.004)	
GPRRUS*RRO		0.026***	
		(0.006)	
GPR			0.0015***
			(0.0001)
GPR*RRO			0.0004*
			(0.0002)
CCI	-0.006***	-0.014***	-0.024***
	(0.002)	(0.002)	(0.002)
SIR	-0.013***	-0.018***	-0.016***
	(0.004)	(0.002)	(0.002)
Const.	0.602***	1.025***	1.872***
	(0.202)	(0.156)	(0.163)
adj. R-sq	0.221	0.349	0.218

Robustness check to overcome endogeneity issue

Variables		EI		FI	NENFI		
	M1	M2	M3	M4	M5	M6	
RRO_{t-1}	-0.0119	-0.055 ***	-0.0060	0.0431***	-0.015***	-0.019***	
	(0.0154)	(0.0189)	(0.0061)	(0.0146)	(0.0038)	(0.0052)	
CCI _{t-1}	-0.037***	-0.0028*	-0.0015***	-0.0039***	-0.00082***	-0.0019***	
	(0.0045)	(0.0017)	(0.00047)	(0.00051)	(0.00029)	(0.00018)	
IR _{t-1}	-0.120***	-0.060***	-0.008***	0.0118***	-0.00148	0.00642***	
	(0.0033)	(0.0030)	(0.0017)	(0.00078)	(0.0010)	(0.00028)	
RUC_{t-1}	0.4125***		0.129***		0.0530***		
	(0.0140)		(0.0114)		(0.00721)		
$RUC * RRO_{t-1}$	-0.2480*		-0.975*		-0.835**		
	(0.1422)		(0.590)		(0.372)		
$GPRRUS_{t-1}$		0.0724***		0.0298***		0.0083***	
		(0.0036)		(0.0025)		(0.0009)	
$GPRRUS * RRO_{t-1}$		-0.0439***		-0.0674***		-0.0062	
		(0.0085)		(0.0130)		(0.00467)	
Observations	1,939	1,939	1,927	1,927	1,927	1,927	
R-squared	0.4748	0.3587	0.473	0.429	0.010	0.654	

Note: Identification test (Anderson canon. corr. LM statistic): 8.064

Chi-sq. (6) P-val = 0.2335, Instrumented: L.RUS*RRO. Included instruments: L.RRO L.CCI L.IR L.RUC

Excluded instruments: GPR IPI GPD REER log(M2) LIR Absorb (id#RUC*RRO)

			EI (%)			FI (%)			NENFI (%)		F	RRO (fraction)
Country	Before RUC	After RUC	Diff.	Before RUC	After RUC	Diff.	Before RUC	After RUC	Diff.	Before RUC	After RUC	Diff.
Austria	1.173	22.380	22.207ª	1.448	11.498	10.054ª	1.873	6.881	5.008ª	0.054	0.002	-0.052ª
	(0.936)	(4.513)	(2.918)	(0.106)	(0.727)	(0.419)	(0.047)	(0.313)	(0.182)	(0.002)	(0.001)	(0.005)
Belgium	3.948	12.077	8.129°	1.490	11.965	10.476 ^a	1.597	5.828	4.230 ^a	0.559	0.135	-0.424ª
	(1.453)	(8.190)	(5.000)	(0.142)	(0.875)	(0.520)	(0.044)	(0.251)	(0.153)	(0.012)	(0.032)	(0.029)
Czech	1.061	27.848	26.786 ^a	1.915	15.108	13.193ª	2.780	10.009	7.229 ^a	0.413	0.435	0.021*
	(0.523)	(9.905)	(1.478)	(0.303)	(1.776)	(1.070)	(0.182)	(0.686)	(0.497)	(0.004)	(0.020)	(0.013)
Denmark	0.844	13.661	12.818 ^a	1.033	10.523	9.491ª	0.947	4.366	3.419 ^a	0.091	0.003	-0.088ª
	(0.939)	(6.440)	(3.713)	(0.135)	(4.834)	(0.580)	(0.039)	(0.211)	(0.131)	(0.006)	(0.006)	(0.012)
Estonia	3.330	34.303	30.973 ^a	2.386	18.738	16.352ª	1.843	9.405	7.562 ^a	1.138	0.105	-1.033ª
	(1.310)	(8.068)	(4.790)	(0.287)	(1.617)	(0.987)	(0.136)	(0.544)	(0.382)	(0.133)	(0.030)	(0.265)
Finland	1.763	13.923	12.160ª	0.293	10.411	10.117ª	0.888	5.644	4.756 ^a	1.245	0.109	-1.136ª
	(0.817)	(4.041)	(2.589)	(0.175)	(1.026)	(0.619)	(0.057)	(0.287)	(0.183)	(0.014)	(0.035)	(0.033)
France	2.593	14.259	11.666ª	1.318	10.592	9.274ª	0.750	3.205	2.454 ^a	0.083	0.049	-0.034ª
	(0.857)	(2.346)	(2.064)	(0.107)	(0.874)	(0.484)	(0.038)	(0.095)	(0.089)	(0.004)	(0.013)	(0.010)
Germany	0.877	18.084	17.206ª	1.919	13.225	11.306ª	1.371	4.651	3.281ª	0.317	0.124	-0.193ª
	(0.811)	(3.143)	(2.246)	(0.158)	(1.157)	(0.656)	(0.083)	(0.191)	(0.190)	(0.003)	(0.028)	(0.015)
Greece	0.872	11.592	10.719ª	0.834	12.217	11.382ª	-0.190	4.435	4.625ª	0.659	0.202	-0.457ª
	(1.215)	(6.369)	(3.988)	(0.188)	(0.478)	(0.442)	(0.092)	(0.314)	(0.241)	(0.011)	(0.044)	(0.031)
Hungary	1.231	20.066	18.835ª	3.506	28.039	24.533ª	2.713	12.523	9.810ª	0.595	0.594	-0.001
	(0.766)	(3.263)	(2.227)	(0.292)	(3.166)	(1.682)	(0.138)	(0.659)	(0.428)	(0.011)	(0.049)	(0.033)
Ireland	1.472	23.241	21.769ª	1.320	8.934	10.255ª	0.860	5.462	4.603ª	0.011	0.001	-0.010 ^c
	(1.060)	(4.605)	(3.115)	(0.117)	(0.677)	(0.411)	(0.102)	(0.155)	(0.216)	(0.002)	(0.001)	(0.005)
Italy	1.625	25.545	23.920ª	1.095	10.108	9.012ª	0.633	3.743	3.110ª	0.184	0.118	-0.066ª
	(1.188)	(6.301)	(3.929)	(0.108)	(0.591)	(0.364)	(0.028)	(0.199)	(0.114)	(0.003)	(0.030)	(0.016)
Latvia	1.648	29.169	27.521ª	2.134	18.349	16.215 ^a	1.880	8.034	6.154 ^a	0.189	0.252	0.063ª
	(0.927)	(6.447)	(3.704)	(0.290)	(1.936)	(1.124)	(0.077)	(0.386)	(0.246)	(0.005)	(0.010)	(0.011)
Lithuania	0.767	26.750	25.983ª	2.177	21.500	19.323ª	2.905	10.350	7.445 ^a	2.541	0.102	-2.439ª
	(1.373)	(7.137)	(4.483)	(0.296)	(2.367)	(1.319)	(0.130)	(0.406)	(0.328)	(0.035)	(0.061)	(0.075)
Luxemburg	2.004	10.862	8.858ª	1.797	9.270	7.473 ^a	1.388	3.944	2.556ª	0	0	0
	(1.370)	(4.257)	(1.425)	(0.109)	(0.558)	(0.352)	(0.062)	(0.086)	(0.131)	(0)	(0)	(0)
Netherland	3.688	22.138	18.450 ^a	1.617	11.991	10.374 ^a	1.510	5.159	3.649 ^a	0.702	0.274	-0.428ª
	(1.473)	(11.368)	(6.379)	(0.175)	(0.860)	(0.552)	(0.064)	(0.268)	(0.184)	(0.016)	(0.058)	(0.043)
Poland	1.836	20.223	18.386ª	2.847	16.023	13.176ª	1.749	9.909	8.160ª	0.709	0.225	-0.484ª
	(0.707)	(2.862)	(2.001)	(0.316)	(1.180)	(0.860)	(0.193)	(0.384)	(0.428)	(0.016)	(0.043)	(0.038)
Portugal	0.812	6.961	6.150ª	1.064	12.357	11.292ª	0.674	5.559	4.885ª	0.229	0.006	-0.223ª
	(0.617)	(3.935)	(2.314)	(0.113)	(1.317)	(0.694)	(0.061)	(0.320)	(0.200)	(0.014)	(0.006)	(0.028)
Slovenia	0.747	12.146	11.398ª	1.747	12.912	11.164ª	0.938	6.739	5.801ª	0.004	0.104	0.100 ^a

Environmental Policy Dilemma

Tracking SDGs & NDCs underpinning Paris Agreements

Financial Needs

While China has achieved its wind and solar capacity goals supporting future growth, enhancing grid infrastructure, storage capacity, and energy efficiency

Why the required investment is challenging

- High Upfront Capital Costs, (including critical mineral)
- Government Fund Dependency vs. Market-Driven Growth
- Financing Gaps and Access to Capital
- Policy and Regulatory Uncertainty
- Energy Infrastructure and Grid Modernization
- Energy Transition and Fossil Fuel Dependency
- Lack of Institutional Capacity
- Lack of Financial Instruments for Risk Mitigation

Effectiveness of environmental Policy Stringency (Sohag et al. 2024, Energy Economics)

Climate Policy Uncertainty in USA

Market Solution: Way-out

 Renewable Energy-based Independent Power Producers (REbased IPPs) ensuring co-benefits

My Views

- In game theory, a **dominant strategy** is a strategy that yields the highest payoff for a player, regardless of the strategies chosen by other players. When it comes to non-cooperation, dominant strategies often lead players to act in their own self-interest, which can result in outcomes that are suboptimal for all involved.
- No Moral framework

Conclusion and Policy Recommendation

- Our findings indicate that dependence on Russian oil tends to curb energy and core inflations over time. Conversely, the Russia-Ukraine conflict, alongside Russian and global geopolitical risks, has exacerbated inflation across all sectors.
- Notably, our analysis reveals a reverse causal relationship between inflation and geoeconomic fragmentation in the context of Russian oil during the Russia-Ukraine conflict.
- IV regression results indicate a negative inflation response to these combined shocks, confirming the robustness of our findings through multiple structural break analyses
- Policy Implication –Cooperation

Reference

- Sohag, K., Islam, M. M., & Hammoudeh, S. (2024). From policy stringency to environmental resilience: Unraveling the dose-response dynamics of environmental parameters in OECD countries. *Energy Economics*, *134*, 107570.
- Sohag, K., Husain, S., & Soytas, U. (2024). Environmental policy stringency and ecological footprint linkage: Mitigation measures of renewable energy and innovation. *Energy Economics*, 107721.
- Sohag, K., Hassan, M. K., Bakhteyev, S., & Mariev, O. (2023). Do green and dirty investments hedge each other?. *Energy Economics*, *120*, 106573.
- Sohag, K., Vasilyeva, R., Voytenkov, V., & Hammoudeh, S. (2024). Natural resource extraction and economic diversification in Russian regions: Application of dynamic DID. *Energy economics*, *136*, 107759.
- Islam, M. M., Sohag, K., Berezin, A., & Sergi, B. S. (2024). Factor proportions model for Russian mineral supply-driven global energy transition: Does externality matter?. *Energy Economics*, 129, 107242.
- Sokhanvar, A., & **Sohag, K.** (2022). What does the clean energy transition look like for Russian oil exports?. *Energy Science & Engineering*, *10*(12), 4512-4519.
- International Renewable Energy Agency (IRENA) Offers projections on global renewable energy investment needs for meeting SDG 7 and NDC targets.
- 6th Assessment | Intergovernmental Panel on Climate Change, IPCC.